Enrollment No:	Exar	am Seat No:	

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Problem Solving-I

Subject Code: 5SC02PRS1 Branch: M.Sc. (Mathematics)

Date: 30/04/2019 Semester: 2 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Attempt the following questions Q-1 (07)

a. Evaluate
$$\int_C (x^2 - y^2 + 2ixy) dz$$
, where C is the contour $|z| = 1$. (01)

b. Show that $v_1 = (1, -2, -4)$ and $v_2 = (-3, 6, 12)$ forms a linearly dependent set (01) inR^3 .

d. Find argument of the complex number
$$z = \frac{1+2i}{1-3i}$$
. (01)

e. The set
$$W = \{(x, y, z) | y = z = 1\}$$
 is subspace of R^3 . (True/False) (01)

g. The function
$$f(z) = \frac{1}{z(z+1)}$$
 has singular point at $z = 1$. (True/False) (01)

Q-2 Attempt all questions **(14)**

a. Evaluate
$$\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$$
, where C is the circle $|z| = 3$. (05)

b. Determine the analytic function
$$f(z) = u + iv$$
, if $v = \log(x^2 + y^2) + x - 2y$. (05)

c. Find the bilinear transformation which maps the points
$$z_1 = 1$$
, $z_2 = i$ and $z_3 = -1$ into the points $w_1 = i$, $w_2 = 0$ and $w_3 = -i$ respectively. (04)

Q-2 Attempt all questions (14)

a. Determine the order of each pole and calculate residue at each of the pole of (05)

$$f(z) = \frac{z^2}{(z-1)^2(z+2)}.$$

b. Prove that (05)

Prove that
$$(i) \frac{(\cos 3\theta + i \sin 3\theta)^5 (\cos \theta - i \sin \theta)^3}{(\cos 5\theta + i \sin 5\theta)^7 (\cos 2\theta - i \sin 2\theta)^5} = \cos 13\theta - i \sin 13\theta,$$

$$(ii) \sin^2 z + \cos^2 z = 1.$$

Q-3		points $(0,0)$, $(1,0)$, $(1,1)$ and $(0,1)$. Attempt all questions	(14)
	a.	Obtain the Laurent's series which represents the function $f(z) = \frac{1}{z^2 - 3z + 2}$ for the	(07)
		regions(i) z < 1, (ii) 1 < z < 2, (iii) z > 2.	
	b.	Express the polynomial $p(x) = -9 - 7x - 15x^2$ as a linear combination	(04)
		of $p_1(x) = 2 + x + 4x^2$, $p_2(x) = 1 - x + 3x^2$, $p_3(x) = 3 + 2x + 5x^2$.	(02)
	c.	Show that $W = \{(x, 0, z) : x \text{ and } z \text{ are real number}\}$ is subspace of R^3 with the standard operations.	(03)
		OR	
Q-3		Attempt all questions	(14)
	a.	Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.	(07)
		Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 2 & 6 \end{bmatrix}$.	
	b.	Prove that $\sinh^{-1} z = \log(z + \sqrt{z^2 + 1})$.	(04)
	c.	Verify the Cauchy-Riemann equations for the function $f(z) = z^3$.	(03)
		SECTION – II	
Q-4		Attempt the following questions	(07)
Q-T	a.	Find particular integral of $(4D^2 + 4D - 3)y = e^{2x}$.	(01)
		Express the quadratic form $2x^2 + 3y^2 + 6xy$ in matrix notation.	(01)
	c.		(01)
	d.	If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ satisfies the matrix equation $A^2 + kA - 2I = 0$, then what is the value of k ?	(01)
	e.	Find the Euclidean inner product of $u = (3, 1, 4, -5)$ and $v = (1, 0, -2, -3)$.	(01)
	f.	The degree of a differential equation $[1 + y'^2]^3 = y''^2$ is 6. (True/False)	(01)
	g.	The function $f(x, y) = 4x^2 + y^2$ on $R: x \le 1, y \le 1$ satisfies Lipschitz condition. (True/False)	(01)
Q-5		Attempt all questions	(14)
•	a.	Solve the following simultaneous equations	(06)
		$\frac{dx}{dt} - 7x + y = 0, \frac{dy}{dt} - 2x - 5y = 0.$	
	b.		(05)
		$\frac{1}{dt} - 7x + y = 0, \frac{1}{dt} - 2x - 3y = 0.$ Find the rank of matrix by normal form, where $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -1 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$.	
	c.	Find $\langle f, g \rangle$ if $f = f(x) = 1 - x + x^2 + 5x^3$, $g = g(x) = x - 3x^2$ and the inner	(03)
		product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$.	
		OR	
Q-5		Attempt all questions	(14)
	a.	Apply method of variation of parameters to solve $(D^2 - 2D + 1)y = 3x^{\frac{3}{2}}e^x$.	(06)
	b.	Solve $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$.	(05)
	c.	Find the standard matrix for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ define by the	(03)
		formula $T(x, y, z) = (3x - 4y + z, x + y - z, y + z, x + 2y + 3z).$	

c. Evaluate $\int_{C} |z|^2 dz$, where C is the boundary of the square whose vertices are at the

(04)

Q-6		Attempt all questions					(14)
	a.		[2	1	1]		(07)
		Find the characteristic equation of the matrix $A =$	0	1	0	and verify Cayley-	` '
			1	1	2		

- Hamilton theorem. **b.** Find particular integral of $(D^2 + 5D + 4)y = x^2 + 7x + 9$. (04)
- $\mathbf{c.} \quad \text{Solve} \frac{dy}{dx} + \frac{y}{x} = x^3 3. \tag{03}$

OR

Q-6 Attempt all questions (14)

- **a.** Find the eigenvalues and the corresponding eigenfunctions of $y'' + \lambda y = 0$, y(0) = 0 = y'(1).
- **b.** Determine whether the given vectors $v_1 = (2, -1, 3), v_2 = (4, 1, 2), v_3 = (8, -1, 8)$ forms span for R^3 . (04)
- $v_3 = (8, -1, 8)$ forms span for R^3 . **c.** Let T be a transformation from R^2 into R^2 defined by $T(x_1, x_2) = (x_1 + 2x_2, 3x_1 - x_2)$. Then show that T is a linear transformation. (03)

